Abstract

In this study, the effect of ammonia derived from different stocking densities on immunological, hematological, and oxidative stress parameters was analyzed in the blood or liver of red seabream. Density- and time-dependent increases in inorganic nitrogen compounds were measured for 20 days by analyzing the three major inorganic nitrogen compounds, total ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen. Three immunity parameters, alternative complement activity, lysozyme activity, and total immunoglobulin content were significantly decreased in the blood at the highest stocking density (10 kg m−3). The concentrations of hemoglobin and white blood cells were significantly decreased at 10 kg m−3, while there was no significant change in red blood cells. The significant increases in cortisol level and the enzymatic activities of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase at 10 kg m−3 clearly supported inorganic nitrogen compounds-triggered stress. A significant elevation of lipid peroxidation value and depletion of intracellular glutathione were observed at 5 and/or 10 kg m−3 in the liver tissue. The hepatic enzymatic activities of antioxidant defense enzymes, catalase and superoxide dismutase were also significantly increased. When a protein skimmer removes the inorganic nitrogen compounds at the highest density, most parameters showed no significant change. Taken together, these results suggest that accumulated inorganic nitrogen compounds at the highest stocking density inhibit innate immunity and induce oxidative stress in red seabream. This information will be helpful to maintain homeostasis of red seabream by controlling immunity and oxidative status through inorganic nitrogen compounds removal in intensive culture condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call