Abstract

Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. Whereas some FATP1 translocates to the plasma membrane in response to insulin, the majority of FATP1 remains within intracellular structures and bioinformatic and immunofluorescence analysis of FATP1 suggests the protein primarily resides in the mitochondrion. To evaluate potential roles for FATP1 in mitochondrial metabolism, we used a proteomic approach following immunoprecipitation of endogenous FATP1 from 3T3-L1 adipocytes and identified mitochondrial 2-oxoglutarate dehydrogenase. To assess the functional consequence of the interaction, purified FATP1 was reconstituted into phospholipid-containing vesicles and its effect on 2-oxoglutarate dehydrogenase activity evaluated. FATP1 enhanced the activity of 2-oxoglutarate dehydrogenase independently of its acyl-CoA synthetase activity whereas silencing of FATP1 in 3T3-L1 adipocytes resulted in decreased activity of 2-oxoglutarate dehydrogenase. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD(+)/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.

Highlights

  • Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification

  • As shown originally by Stahl et al [5] and subsequently by Lobo et al [3], FATP1 translocates from intracellular sites to the plasma membrane in response to insulin and such translocation mediates, in part, insulin-stimulated fatty acid influx

  • FATP1 has been previously demonstrated to play a vital role in insulin-stimulated Long-chain fatty acid (LCFA) influx both in adipocytes [3, 5] and skeletal muscle [5]

Read more

Summary

Introduction

Fatty acid transport proteins (FATPs) are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP1 silenced 3T3-L1 adipocytes exhibited decreased tricarboxylic acid cycle activity, increased cellular NAD+/NADH, increased fatty acid oxidation, and increased lactate production indicative of altered mitochondrial energy metabolism. These results reveal a novel role for FATP1 as a regulator of tricarboxylic acid cycle activity and mitochondrial function.—Wiczer, B. Functional studies of FATP4 have shown that the protein does not play a role in LCFA uptake in either enterocytes [23] or adipocytes [3] but in fat cells may function in fatty acid reesterification following lipolysis [3]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.