Abstract
The seismic vulnerability of concrete structures has prompted the development of innovative approaches to enhance earthquake resistance. Recent earthquakes have demonstrated the challenges of repairing concrete buildings damaged beyond feasible restoration. In response, research in structural engineering has increasingly focused on damage-resisting reinforced concrete walls, offering improved self-centering behavior and damage mitigation compared to traditional counterparts. Self-centering walls, employing a rocking mechanism, exhibit effective damage minimization and residual deformation reduction. This study introduces a robust approach to precast reinforced concrete walls, comprising a precast reinforced concrete shear wall integrated with an external energy dissipation component. The energy dissipation element, a reinforced concrete column attached externally on both sides of the wall, acts as a new damage-limiting component with enhanced energy dissipation capacity. Utilizing the general-purpose Finite Element (FE) software ABAQUS, a three-dimensional simulation of experimentally investigated self-centering precast reinforced concrete walls was developed. The finite element model was validated and subsequently employed to assess the performance of the proposed system under cyclic loading. Various design parameters of the reinforced concrete energy dissipation element, including cross-sectional area, wall height proportion, concrete strength, primary reinforcement yield strength, and reinforcement ratio, were investigated. Additionally, the suggested system underwent cyclic loading in multiple scenarios simulating subsequent earthquakes. The finite element analysis results indicate that the proposed method, with a well-designed energy dissipation element, ensures minimal damage, a controlled increase in lateral resistance, sufficient energy dissipation capacity, and the required resilience following successive seismic events.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have