Abstract

AbstractThe primary methods of assessing the reliability of distribution networks comprise analytic and simulation methods. However, both approaches require the identification and computation of network topology, which precludes their expression in explicit, continuous functions, consequently impeding the incorporation of reliability constraints into planning and operational optimization models. To tackle this restriction, the present work puts forth a novel linear‐programming‐based reliability assessment method that is mathematically formulated, considering distribution automation (DA) and distributed generations (DGs), consisting of both conventional and renewable energy sources. In this paper, the clustering method and the scenario‐based method are used to model DGs. Next, a mixed integer linear programming (MILP) model, considering the DA and DGs with the System Average Interruption Duration Index (SAIDI) as the optimization objective, is proposed. Finally, the feasibility and effectiveness of the proposed method are verified in a 37‐node distribution network system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.