Abstract

ABSTRACT The paper addresses the Automatic Generation Control (AGC) of the interconnected two-area power system under deregulated environment. Area 1 includes thermal system, Distributed Generation (DG), and aggregate Electric Vehicle (EV) wheras area 2 contains thermal system, gas system, and aggregate electric vehicle. Nonlinearities such as Generation Rate Constraint (GRC), Governor Dead Band (GDB), Boiler Dynamics (BD), and Communication Delay (CD) are explored in the proposed test system to achieve a realistic approach. For considering cross coupling effect between excitation system and AGC, an exact model has been investigated. A novel cascade controller has been proposed to achieve the desired goal. For optimum values of controller, new novel Quasi Opposition Lion Optimization Algorithm (QOLOA) has been suggested and implemented for the studied system. The sensitivity analysis study was performed to assess the robustness of the proposed controller by varying system parameters. System parameters are varied by ±25%, ±35%, and ±50%, and the result shows the robustness of the controller and algorithm For the proposed controller, Figure of Demerit (FOD) is compared with various algorithms, and the Integral square Error (ISE) is taken as objective function. The optimistic results shows the effectiveness & superiority of proposed AGC in different scenario of deregulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.