Abstract

Exposure of vascular cell-seeded, tubular, biodegradable polymers to pulsatile flow conditions has been proposed as a method to develop tissue-engineered blood vessels by "maturing" structural integrity, and increasing collagen content, suture retention, burst pressure, and tissue formation. These in vitro tissue-engineered arteries demonstrate contractile responses to pharmacologic agents and express markers of vascular differentiation. Current methods to induce pulsatile flow in a bioreactor system are limited by the creation of nonphysiologic pressure waveforms and noncompliant reservoirs to house the tissue-engineered vascular constructs. We have developed a novel method for the in vitro development of tubular vascular structures by using a mechanical ventilator to induce pulsatile, laminar flow into a fluid column, resulting in pressurized waveforms similar to mammalian physiology. The vascular constructs are housed in semicompliant tubing to facilitate an additional variable of circumferential stretch as a potential signaling mechanism. This approach more closely approximates mammalian physiology and we hypothesize that it will facilitate mechanical signaling necessary for the development of tissue-engineered vessels for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call