Abstract

Polyaniline (PANI) is a globally investigated conductive polymer with a variety of applications in various fields due to its ease of synthesis and modification. One method of enhancing the physico-chemical properties and processability of PANI is the incorporation of polymers and nanoparticles to form composite and hybrid materials with new features. This study reports the electrochemical synthesis of a polyaniline nanocomposite that incorporates titanium dioxide nanoparticles (TiO2) and poly (methyl methacrylate) (PMMA). The significant effects of PMMA and TiO2 nanoparticles on structural, morphological, optical and electrochemical properties of native polyaniline were investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, cyclic voltammetry (CV) and square wave voltammetry (SWV). The formation and deformation of relevant peaks observed from the FTIR spectra confirm the intrusion of PMMA and TiO2 into PANI while the voltammetric results show that the incorporation of both dopants significantly enhanced the electroactivity of PANI in a neutral pH medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call