Abstract

Atmospheric plasma-sprayed YSZ (yttria-stabilized zirconia) thermal barrier coatings (TBCs) are widely used in industrial gas turbine engines to protect the superalloy blades from failure. The failure of TBCs in service occurs by the spalling of YSZ coating. Crack propagation leading to the failure of plasma-sprayed TBCs usually occurs within the YSZ coating near the YSZ/bond coat interface. In the present study, a novel durable TBC consisting of a YSZ interlayer of well-bonded lamellae between the bond coat and the conventional YSZ porous top coat was introduced. The YSZ interlayer was deposited at different coating surface temperatures, which resulted in the formation of YSZ with significantly improved interlamellar bonding. The result shows that the thermal cyclic lifetime of the novel TBCs with the 20-30-μm-thick YSZ interlayer increased by a factor of 4 compared with that of the conventional one. The improved thermal cyclic lifetime was attributed to the controlled transition of the cracking path from near the YSZ/bond coat interface to the YSZ top layer. The effect of the YSZ interlayer thickness on the lifetime of TBCs was also investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call