Abstract

Photocathode based on p-type PbS quantum dots (QDs) combing a novel signal amplification strategy utilizing catalase (CAT) mimetics was designed and utilized for sensitive photoelectrochemical (PEC) detection of DNA. The bio-bar-coded Pt nanoparticles (NPs)/G-quadruplex/hemin exhibited high CAT-like activity following the Michaelis-Menten model for decomposing H2O2 to water and oxygen, whose activity even slightly exceeded that of natural CAT. The bio-bar-code as a catalytic label was conjugated onto the surface of PbS QDs modified electrodes through the formed sandwich-type structure due to DNA hybridization. Oxygen in situ generated by the CAT mimetics of the bio-bar-code of Pt NPs/G-quadruplex/hemin acted as an efficient electron acceptor of illuminated PbS QDs, promoting charge separation and enhancing cathodic photocurrent. Under optimal conditions, the developed PEC biosensor for target DNA exhibited a dynamic range of 0.2pmol/L to 1.0nmol/L with a low detection limit of 0.08pmol/L. The high sensitivity of the method was resulted from the sensitive response of PbS QDs to oxygen and the highly efficient CAT-like catalytic activity of the bio-bar-coded Pt NPs/G-quadruplex/hemin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.