Abstract

Quasi-zero stiffness (QZS) vibration isolators have attracted extensive attention because of their excellent performance in low-frequency vibration isolation and high bearing capacity. However, its practical engineering application remains challenges due to the magnitude and adaptability of the negative stiffness. This paper proposes a permanent magnet type variable stiffness (PMVS) mechanism with a wide stiffness range from negative to positive. Based on the semi-analytical model of magnetic force, the QZS isolator composed of the spiral spring in parallel with the PMVS mechanism is developed, which has both stiffness adjustment and load adaptability. The nonlinear dynamic equation with 5th polynomial restoring force is established then solved by the harmonic balance method (HBM). The dynamic behaviours is investigated and validated through the experimental prototype and good isolation performance is observed. Building upon the wide stiffness adjustment and large magnitude of the PMVS mechanism. the proposed isolator achieves a stiffness range of 4.15–153.45 N/mm under a safe load up to 120 kg, which implies that the natural frequency of the isolator can reach an ultralow value of 0.93 Hz within the safe load (120 kg).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call