Abstract
In the paper, a novel passive vibration isolator is proposed for an ultra-precision sensing system, utilizing a quasi-zero stiffness (QZS) mechanism. The QZS mechanism implements the high static low dynamic stiffness, which effectively reduces the dynamic force transmission while minimizing the static deflection under the natural frequency of conventional passive isolator. Furthermore, it does not need any electric components; the mechanism is suitable for the ultra-precision sensing systems measuring extremely weak electromagnetic fields. However, nonlinear stiffness and hysteresis caused from the negative stiffness elements degrade the system performance. A vertical spring with a pre-tension and eight horizontal plate springs with nonlinear buckling characteristics constitute the proposed system to solve these problems. The mathematical model compares the negative stiffness design with previous QZS research. The buckled plate spring with ball joint design reduces stiffness variation. Transmissibility of the proposed system for low frequency range is investigated experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Precision Engineering and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.