Abstract
In this work, the combination effect of tuned mass damper and high static low dynamic stiffness (HSLDS) isolator is investigated in reducing the vibration amplitude of Euler–Bernoulli beam with a nonlinear attachment. The performance of the absorber is studied in two cases; the first case, HSLDS isolator is one degree of freedom and the second case, two degree of freedom isolator is combined of HSLDS isolator and tuned mass damper absorber. By comparing the performance of these two isolators, it is revealed the two degree of freedom isolator has much better performance in direct force excitation and also improves the system performance in the base excitation. This isolator reduces the system amplitude at all frequencies, especially ultra-low frequencies, which is the main advantage to this isolator with respect to other isolators and reduces the natural frequency until the phenomenon of resonance occurs at a lower frequency. Moreover, decreasing the natural frequency increases the damping and in quasi zero stiffness and negative stiffness structure, the system has supercritical damping. This isolator is studied for positive, quasi zero and negative stiffness. The results show that the system with quasi zero stiffness has the best performances. Also, by increasing the excitation amplitude, the isolator loses its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.