Abstract
The self-organizing map (SOM), with its related extensions, is one of the most widely used artificial neural algorithms in unsupervised learning and a wide variety of applications. Dealing with very large data sets, however, the training time on a single processor is too high to be acceptable for time-critical application domains. To cope with this problem, we present a scheme consisting of a novel parallel model and its implementation on a dynamic data-driven multiprocessor. The parallel model ensures that no load imbalance will occur, while the dynamic data-driven multiprocessor yields high scalability. We demonstrate the effectiveness of the scheme by comparing the parallel model with an existing parallel model, and the proposed implementation with an implementation on another multiprocessor.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have