Abstract

A novel three-dimensional (3D) wafer-level sandwich packaging technology is here applied in the dual mass MEMS butterfly vibratory gyroscope (BFVG) to achieve ultra-high Q factor. A GIS (glass in silicon) composite substrate with glass as the main body and low-resistance silicon column as the vertical lead is processed by glass reflow technology, which effectively avoids air leakage caused by thermal stress mismatch. Sputter getter material is used on the glass cap to further improve the vacuum degree. The Silicon-On-Insulator (SOI) gyroscope structure is sandwiched between the composite substrate and glass cap to realize vertical electrical interconnection by high-vacuum anodic bonding. The Q factors of drive and sense modes in BFVG measured by the self-developed double closed-loop circuit system are significantly improved to 8.628 times and 2.779 times higher than those of the traditional ceramic shell package. The experimental results of the processed gyroscope also demonstrate a high resolution of 0.1°/s, the scale factor of 1.302 mV/(°/s), and nonlinearity of 558 ppm in the full-scale range of ±1800°/s. By calculating the Allen variance, we obtained the angular random walk (ARW) of 1.281°/√h and low bias instability (BI) of 9.789°/h. The process error makes the actual drive and sense frequency of the gyroscope deviate by 8.989% and 5.367% compared with the simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.