Abstract

The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spherical motors using optical sensors. The spatial orientation of spherical rotor is output in the form of ZXZ Euler angles. Firstly, the structure of the measuring system composed of optical sensors and the patterns on the rotor surface are presented, and the operational principle of recognizing intersection points between the optical ring detectors and the latitude/longitude on the rotor surface is illustrated. The analytical model of input-output characteristic is established for the measuring system of three-DOF rotor orientation. Afterwards, the effect of parameters of the optical ring detectors on the linearity, sensitivity, resolving power and measuring range of the measuring system is analyzed using the analytical model. Finally, the feasibility of the measurement is validated through experiments of prototype measuring system. The analysis is expected to be a basis for the design parameter optimization of the orientation measuring system of a PM spherical motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.