Abstract
Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.