Abstract

DNA methylation is intensively studied in medical science. Current HPLC methods for quantification of global DNA methylation involve digestion of a DNA sample and HPLC determination of both cytosine (C) and 5-methylcytosine (5mC) so that percentage of 5mC in total cytosine can be calculated as DNA methylation level. Herein we report a novel HPLC method based on a one-pot fluorescence tagging and depyrimidination reaction between DNA and chloroacetaldehyde (CAA) for highly sensitive quantification of global DNA methylation. In the one-pot reaction, C and 5mC residues in a DNA sequence react with CAA, forming fluorescent etheno-adducts that are then released from the sequence through depyrimidination. Interestingly, etheno-5mC (ε-5mC) is ∼20 times more fluorescent than ε-C and other ε-nucleobases resulting from the reaction, which greatly facilitates the quantification. Further, due to the tagging-induced increase in structural aromaticity, ε-nucleobases are far more separable by HPLC than intact nucleobases. The proposed HPLC method with fluorescence detection (HPLC-FD) is quick (i.e., < 1h per assay) and highly sensitive with a detection limit of 0.80 nM (or 250 fg on column) for 5mC. Using the method, DNA samples isolated from yeast, HCT-116 cells, and tissues were analyzed. Global DNA methylation was measured to be in the range from 0.35% to 2.23% in the samples analyzed. This sensitive method allowed accurate analyses of minute DNA samples (∼100 ng) isolated from milligrams of tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.