Abstract
As a crucial factor affecting water flooding in tight sandstone reservoirs, dynamic capillary pressure (DCP) has significant impact on the production performance during oil-water flow. In this work, a novel numerical simulation method with DCP is developed to study oil displacement in tight sandstone reservoirs. Based on this new model, the impacts from DCP to water/oil displacement (or water flooding effects) are analysed. The results of this work show that the effects brought by dynamic capillary pressure cannot be neglected. The more significant dynamic effects of capillary pressure correspond to the sample with lower permeability. The effect of DCP is probably a major contributor to non-linear flow (non-Darcy flow) in tight sandstone reservoirs during water flooding process. Compared with the conventional flow theory (e.g., static capillary pressure theory), our derived model with DCP can help to reduce the uncertainty in water/oil flow in tight sandstone reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.