Abstract
Evolution equations containing fractional derivatives can provide suitable mathematical models for describing anomalous diffusion and transport dynamics in complex systems that cannot be modeled accurately by normal integer order equations. Recently, researchers have found that many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the mobile–immobile advection–dispersion model with the Coimbra variable time fractional derivative which is preferable for modeling dynamical systems and is more efficient from the numerical standpoint. A novel implicit numerical method for the equation is proposed and the stability of the approximation is investigated. As for the convergence of the numerical method, we only consider a special case, i.e., the time fractional derivative is independent of the time variable t. The case where the time fractional derivative depends on both the time variable t and the space variable x will be considered in a future work. Finally, numerical examples are provided to show that the implicit difference approximation is computationally efficient.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.