Abstract
Evolution equations containing fractional derivatives can offer efficient mathematical models for determination of anomalous diffusion and transport dynamics in multi-faceted systems that cannot be precisely modeled by using normal integer order equations. In recent times, researches have found out that lots of physical processes illustrate fractional order characteristics that alters with time or space. The continuum of order in the fractional calculus permits the order of the fractional operator be accounted for as a variable. In the current research work, radial basis functions (RBFs) approximation is utilized for solving fractional mobile-immobile advection-dispersion (TF-MIM-AD) model in a bounded domain which is applied for explaining solute transport in both porous and fractured media. In this approach, firstly, the discretization process of the aforesaid equation with of convergence order $$\mathcal {O}(\delta t^{})$$ in the t-direction is described via the finite difference scheme for $$ 0< \alpha <1$$ . Afterwards, by help of the meshless methods based on RBFs, we will illustrate how to obtain the approximated solution. The stability and convergence of time-discretized scheme are also theoretically discussed in detail throughout the paper. Finally, two numerical instances are included to clarify effectiveness and accuracy of our proposed concepts which is investigated in the current research work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied and Computational Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.