Abstract
The early fault diagnosis is a kind of important technology to ensure the normal and reliable operation of wind turbines. However, due to the potential presence of noisy labels in health condition dataset and the weakly explanation of the deep neural network decisions, the performance of fault diagnosis is severely limited. In this paper, a framework called normalized recurrent neural network (NRNN) is proposed for noisy label fault diagnosis, in which the normalized long short-term memory is used to improve the training process and the forward crossentropy loss is introduced to handle the negative effect of noisy labels. The effectiveness and superiority of the proposed framework are verified by four datasets with different noisy label proportions. Meanwhile, the layer-wise relevance propagation algorithm is applied to explore the decision of framework and by visualizing the relevances of input samples to framework decisions, the NRNN does not treat samples equally and prefers signal peaks for classification decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.