Abstract

We report a new non-raster scan method based on a rosette pattern for high-speed atomic force microscopy (AFM). In this method, the lateral axes of the scanner are driven by the sum of two sinusoids with identical amplitudes and different frequencies. We formulate the problem so as to generate the rosette pattern and calculate scan parameters and resolution. To achieve high performance tracking, a controller is designed based on the internal model principle. The controller includes the dynamic modes of the reference signals and higher harmonics to cope with the system nonlinearities. We conduct an experiment employing the proposed method and a two degree of freedom microelectromechanical system nanopositioner to scan a circular-shaped area with a diameter of 6μm in 0.2 sec. The steady state tracking error is less than 4.48nm, i.e. only 9% of the selected resolution. AFM scanning is performed in contact mode constant height and high quality images are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call