Abstract

We present a control scheme for video-rate atomic force microscopy with rosette pattern. The controller structure involves a feedback internal-model-based controller and a feedforward iterative learning controller. The iterative learning controller is designed to improve tracking performance of the feedback-controlled scanner by rejecting the repetitive disturbances arising from the system nonlinearities. We investigate the performance of two inversion techniques for constructing the learning filter. We conduct tracking experiments using a two-degree-of-freedom microelectromechanical system (MEMS) nanopositioner at frame rates ranging from 5 to 20 frames per second. The results reveal that the algorithm converges rapidly and the iterative learning controller significantly reduces both the transient and steady-state tracking errors. We acquire and report a series of high-resolution time-lapsed video-rate AFM images with the rosette pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.