Abstract

A nanocomposite of Ce-doped ZnO/r-GO was synthesized using a conventional hydrothermal method. The synthesized nanocomposites were utilized for the purpose of sensitive and selective detection of cyclobenzaprine hydrochloride (CBP). The properties of the composite were extensively analyzed, including its morphology, structure, and electrochemical behavior. This study investigates the application of a modified glassy carbon electrode for the detection of CBP, a muscle relaxant used to treat musculoskeletal diseases that cause muscle spasms. The electrode is modified with Ce-doped ZnO/r-GO. Various detection methods, such as cyclic voltammetric and square wave techniques (SWV), were utilized. The composite material showed high effectiveness as an electron transfer mediator in the oxidation of CBP. The electrode showed a good response for SWV evaluations in CBP identification, with a minimum detection limit of 1.6 × 10-8M and a wide linear range from 10 × 10-6 M to 0.6 × 10-7 M, under ideal conditions. The rate constant for charge transfer (ks) and the estimation of the electrochemical active surface area were obtained. A developed sensor exhibited desirable selectivity, long-lasting stability, and remarkable reproducibility. A sensor was used to analyze water, human serum, and urine samples, resulting in positive recovery results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call