Abstract
In this study, rice husk was used as a sustainable source to synthesize graphene quantum dots (GQDOs) with 2D morphology. Chemical modification of GQDOs with Ba(OH)2 was followed to form a novel GQDOs-Ba nanobiosorbent with an increased number of surface hydroxyl groups. The physicochemical properties of GQDOs and GQDOs-Ba were investigated by FT-IR, SEM, TEM, TGA, and XRD. The adsorption parameters of Pb(II) and La(III) onto GQDOs-Ba were optimized using microwave sorption approach. The maximum capacity reached 3400 µmol g−1 (pH 7), and 1500 µmol g−1 (pH 5) at 15 s for Pb(II) and La(III), respectively. The adsorption isotherm models by GQDOs-Ba fitted well with Langmuir. The pseudo-second order was agreed by Pb(II) and La(III) ions. The thermodynamic studies elucidated that Pb(II) and La(III) adsorption onto GQDOs-Ba followed a spontaneous model. The GQDOs-Ba nanobiosorbent accomplished excellent removal percentages from different water samples containing lead (98.5%–99.8%) and lanthanum (94.6%–96.2%).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have