Abstract

To further understand the cellular and molecular mechanisms underlying cortical bone graft healing, we have developed a novel mouse femur model that permits quantitative and molecular analysis of structural bone graft healing. A 4 mm mid-diaphyseal femoral segment was removed and replaced by either immediate implantation of a fresh autograft, a frozen, genetically identical isograft or a frozen allograft from a different strain of mouse, which was secured with a 22-gauge metal intramedullary pin. Healing was evaluated by radiology, histomorphometry, and in situ hybridization. Autograft repair occurred by endochondral bone formation at the host–graft junction and by intramembranous bone formation along the length of the graft bed at 2 weeks, with maturation and remodeling apparent by 4 weeks. Bone repair in allografts and isografts completely relied on endochondral bone formation at the host–graft cortical junction, with absence of periosteal bone formation along the length of the graft, suggesting that live periosteal cells from the donor tissue are necessary for this response. This small animal model of structural bone grafting can be used to evaluate tissue-engineered allografts and novel bone graft substitutes using quantitative and molecularly defined outcome measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.