Abstract

Botnet attacks, such as DDoS, are one of the most common types of attacks in IoT networks. A botnet is a collection of cooperated computing machines or Internet of Things gadgets that criminal users manage remotely. Several strategies have been developed to reduce anomalies in IoT networks, such as DDoS. To increase the accuracy of the anomaly mitigation system and lower the false positive rate (FPR), some schemes use statistical or machine learning methodologies in the anomaly-based intrusion detection system (IDS) to mitigate an attack. Despite the proposed anomaly mitigation techniques, the mitigation of DDoS attacks in IoT networks remains a concern. Because of the similarity between DDoS and normal network flows, leading to problems such as a high FPR, low accuracy, and a low detection rate, the majority of anomaly mitigation methods fail. Furthermore, the limited resources in IoT devices make it difficult to implement anomaly mitigation techniques. In this paper, an efficient anomaly mitigation system has been developed for the IoT network through the design and implementation of a DDoS attack detection system that uses a statistical method that combines three algorithms: exponentially weighted moving average (EWMA), K-nearest neighbors (KNN), and the cumulative sum algorithm (CUSUM). The integration of fog computing with the Internet of Things has created an effective framework for implementing an anomaly mitigation strategy to address security issues such as botnet threats. The proposed module was evaluated using the Bot-IoT dataset. From the results, we conclude that our model has achieved a high accuracy (99.00%) with a low false positive rate (FPR). We have also achieved good results in distinguishing between IoT and non-IoT devices, which will help networking teams make the distinction as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call