Abstract

We describe a new procedure for the analysis of the methlyation status of imprinted genes based on methylation-specific PCR followed by denaturing high performance liquid chromatography (MSP/DHPLC). The method offers a rapid and very reliable alternative to conventional methods used for such purposes such as Southern blots and methylation specific PCR (allele-specific MSP). The efficient resolution of the differentially methylated alleles is demonstrated for two human imprinted genes, namely the SNRPN gene and the LIT1 gene (KCNQ1OT1). Abnormal imprinting of the two genes is associated with the Angelman/Prader-Willi syndromes and the Beckwith-Wiedemann syndrome, respectively. The MSP/DHPLC method is based on PCR amplification of gene segments which show parent-of-origin specific methylation. Genomic DNA is subjected to an in vitro bisulfite treatment prior to PCR amplifications using primers specific for modified DNA. Both alleles are theoretically amplified with equal efficiency and are represented by identically sized PCR products; they differ, however, at a number of positions within the amplified DNA segment. The DHPLC analysis allows a very efficient resolution of the two populations of PCR products. The high sensitivity and quantitative properties of the MSP/DHPLC method are illustrated based on its ability to reveal a low cell mosaicism in an infant with a maternal uniparental disomy 15 (i.e., Prader-Willi syndrome patient). The minor cell line (approximately 8% in blood) was not detectable with conventional molecular analysis. While the detection of low cell mosaicisms of structurally abnormal chromosomes usually relies on cytogenetic studies, the MSP/DHPLC method described here not only offers an alternative at the molecular level, but may also reveal mosaicisms concerning structurally intact chromosomes. Hum Mutat 17:423–430, 2001. © 2001 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.