Abstract

Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are 2 distinct neurodevelopmental disorders caused primarily by deficiency of specific parental contributions at an imprinted domain within the chromosomal region 15q11.2-13. In most cases, lack of paternal contribution leads to PWS either by paternal deletion (approximately 70%) or maternal uniparental disomy (UPD; approximately 30%). Most cases of AS result from the lack of a maternal contribution from this same region by maternal deletion (approximately 70%) or by paternal UPD (approximately 5%). Analysis of allelic methylation differences at the small nuclear ribonucleoprotein polypeptide N (SNRPN) locus can differentiate the maternally and paternally inherited chromosome 15 and can be used as a diagnostic test for AS and PWS. Sodium bisulfite-treated genomic DNA was PCR-amplified for the SNRPN gene. We used pyrosequencing to individually quantify the resulting artificial C/T sequence variation at CpG sites. Anonymized DNA samples from PWS patients (n = 40), AS patients (n = 31), and controls (n = 81) were analyzed in a blinded fashion with 2 PCR and 3 pyrosequencing reactions. We compared results from the pyrosequencing assays with those obtained with a commonly used methylation-specific PCR (MS-PCR) diagnostic protocol. The pyrosequencing assays had a sensitivity and specificity of 100% and provided quantification of methylation at 12 CpG sites within the SNRPN locus. The resulting diagnoses were 100% concordant with those obtained from the MS-PCR protocol. Pyrosequencing is a rapid and robust method for quantitative methylation analysis of the SNRPN locus and can be used as a diagnostic test for PWS and AS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call