Abstract

For high-resolution wide-swath (HRWS) SAR based on multiple receive apertures in azimuth, this paper proposes a novel imaging approach for moving targets. This approach utilizes the wide bandwidth characteristics of the transmitted signal (multiple wavelengths) to estimate the moving target velocity. First, this paper explains that there is a phase mismatch (PM) between azimuth channels for the echo of a moving target, which depends on range frequency. In order to correct the PM, an algorithm based on local maximum-likelihood minimum entropy is proposed. The linear dependence of the PM on range frequency is employed to estimate the target velocity. Second, after the signal reconstruction in Doppler frequency and the compensation of the PM for a moving target, the estimated target velocity is utilized to implement the linear range cell migration correction and the Doppler centroid shifting. Then, the quadratic range cell migration is corrected by the keystone processing. After that, the focused moving target image can be obtained using the existing azimuth focusing approaches. Theoretical analysis shows that no interpolation is needed. The effectiveness of the imaging algorithm for moving targets is demonstrated via simulated and real measured ship HRWS ScanSAR data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.