Abstract

In this paper, a novel molecularly imprinted electrochemical sensor (MIECS) based on a glassy carbon electrode (GCE) modified with graphene quantum dots (GQDs) coated on hollow nickel nanospheres (hNiNS) for the rapid determination of bisphenol S (BPS) was proposed for the first time. HNiNS and GQDs as electrode modifications were used to enlarge the active area and electron-transport ability for amplifying the sensor signal, while molecularly imprinted polymer (MIP) film was electropolymerized by using pyrrole as monomer and BPS as template to detect BPS via cyclic voltammetry (CV). Scanning electron microscope (SEM), energy-dispersive spectrometry (EDS), CV and differential pulse voltammetry (DPV) were employed to characterize the fabricated sensor. Experimental conditions, such as molar ratio of monomer to template, electropolymerization cycles, pH, incubation time and elution time were optimized. The DPV response of the MIECS to BPS was obtained in the linear range from 0.1 to 50μM with a low limit of detection (LOD) of 0.03μM (S/N = 3) under the optimized conditions. The MIECS exhibited excellent response towards BPS with high sensitivity, selectivity, good reproducibility, and stability. In addition, the proposed MIECS was also successfully applied for the determination of BPS in the plastic samples with simple sample pretreatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.