Abstract
BackgroundIn the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high risk for short- and long-term morbidity and mortality. Machine learning (ML) has promise to address research priorities and improve delirium outcomes. However, due to clinical and billing conventions, delirium is often inconsistently or incompletely labeled in electronic health record (EHR) datasets. Here, we identify clinical actions abstracted from clinical guidelines in electronic health records (EHR) data that indicate risk of delirium among intensive care unit (ICU) patients. We develop a novel prediction model to label patients with delirium based on a large data set and assess model performance.MethodsEHR data on 48,451 admissions from 2001 to 2012, available through Medical Information Mart for Intensive Care-III database (MIMIC-III), was used to identify features to develop our prediction models. Five binary ML classification models (Logistic Regression; Classification and Regression Trees; Random Forests; Naïve Bayes; and Support Vector Machines) were fit and ranked by Area Under the Curve (AUC) scores. We compared our best model with two models previously proposed in the literature for goodness of fit, precision, and through biological validation.ResultsOur best performing model with threshold reclassification for predicting delirium was based on a multiple logistic regression using the 31 clinical actions (AUC 0.83). Our model out performed other proposed models by biological validation on clinically meaningful, delirium-associated outcomes.ConclusionsHurdles in identifying accurate labels in large-scale datasets limit clinical applications of ML in delirium. We developed a novel labeling model for delirium in the ICU using a large, public data set. By using guideline-directed clinical actions independent from risk factors, treatments, and outcomes as model predictors, our classifier could be used as a delirium label for future clinically targeted models.
Highlights
In the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high risk for short- and long-term morbidity and mortality
Study population Study data were drawn from Medical Information Mart for Intensive Care-III (MIMIC-III), a freely available database of electronic health record (EHR) data collected on 63,157 intensive care unit (ICU) admissions at Beth Israel Deaconess Medical Center from 2001 to 2012 [38,39,40,41]
Our model incorporates 31 clinical actions as features, an approach that has been previously overlooked in other delirium prediction models
Summary
In the intensive care unit (ICU), delirium is a common, acute, confusional state associated with high risk for short- and long-term morbidity and mortality. We identify clinical actions abstracted from clinical guidelines in electronic health records (EHR) data that indicate risk of delirium among intensive care unit (ICU) patients. The primary treatment is identification, diagnosis, and treatment of the etiologic organic illness or toxic insult, accompanied by pharmacological and nonpharmacological delirium symptom management [11]. These challenges make delirium an important target of machine learning (ML) [14,15,16,17,18,19,20,21,22]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have