Abstract

Background: There are very few animal models of balloon angioplasty injury in arteriovenous fistula (AVF), hindering insight into the pathophysiologic processes following angioplasty in AVF. The objective of the study was to develop and characterize a rat model of AVF angioplasty injury. Methods: Balloon angioplasty in 12- to 16-week-old Sprague-Dawley rats was performed at the arteriovenous anastomosis 14 days post-AVF creation with a 2F Fogarty balloon catheter. Morphometry and protein expression of endothelial nitric oxide synthase (eNOS), monocyte-chemoattractant protein-1 (MCP-1), alpha-smooth muscle actin (α-SMA), CD68 (macrophage marker), and collagen expression in AVFs with and without angioplasty were assessed. Results: In AVFs with angioplasty versus without angioplasty: (1) angioplasty increased AVF-vein and artery intimal hyperplasia, (2) angioplasty decreased eNOS protein expression in AVF-vein and artery at 21 days post-AVF creation and remained decreased in the AVF-vein angioplasty group at 35 days, (3) angioplasty increased AVF-vein and artery α-SMA expression within the intimal region at 35 days, (4) angioplasty increased the expression of AVF-vein MCP-1 at 21 days and CD68 at 21 and 35 days, and (5) angioplasty increased AVF-vein and artery collagen expression at 35 days. Conclusion: Our findings describe a reproducible rat model to better understand the pathophysiologic mechanisms that ensue following AVF angioplasty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call