Abstract

A new sensor based on symmetrical split ring resonator (SSRR) functioning at microwave frequencies has been proposed in order to detect and characterize the properties of the materials. This sensor is based on perturbation theory, in which the dielectric properties of the material affect the quality factor and resonance frequency of the microwave resonator. Conventionally, coaxial cavity, waveguide, dielectric resonator techniques have been used for characterizing materials. However, these techniques are often large, and expensive to build, which restricts their use in many important applications. Thus, the proposed bio-sensing technique presents advantages such as high measurement sensitivity (around 400 Q-factor) with the capability of suppressing undesired harmonic spurious and permits potentially material characterization and determination. Hence, using a specific experimental methodology, tests performed have demonstrated the biosensor ability to characterize at least four references materials with known permittivity (Air, Roger Duriod RT 5880, Roger Duriod RT 4530, FR4) and one material with unknown permittivity (Beef). Accordingly, the numerically established relations are experimentally verified for these reference materials and the results indicated that the average estimation error of measuring the permittivity was 2.56 % at resonant of around 2.2 GHz. The proposed design is useful for various applications such as food industry, medicine, pharmacy, bio-sensing and quality control

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.