Abstract
BackgroundSchizophrenia is a complex brain disorder with molecular mechanisms that have yet to be elucidated. Previous studies have suggested that changes in gene expression may play an important role in the etiology of schizophrenia, and that microRNAs (miRNAs) and transcription factors (TFs) are primary regulators of this gene expression. So far, several miRNA-TF mediated regulatory modules have been verified. We hypothesized that miRNAs and TFs might play combinatory regulatory roles for schizophrenia genes and, thus, explored miRNA-TF regulatory networks in schizophrenia.ResultsWe identified 32 feed-forward loops (FFLs) among our compiled schizophrenia-related miRNAs, TFs and genes. Our evaluation revealed that these observed FFLs were significantly enriched in schizophrenia genes. By converging the FFLs and mutual feedback loops, we constructed a novel miRNA-TF regulatory network for schizophrenia. Our analysis revealed EGR3 and hsa-miR-195 were core regulators in this regulatory network. We next proposed a model highlighting EGR3 and miRNAs involved in signaling pathways and regulatory networks in the nervous system. Finally, we suggested several single nucleotide polymorphisms (SNPs) located on miRNAs, their target sites, and TFBSs, which may have an effect in schizophrenia gene regulation.ConclusionsThis study provides many insights on the regulatory mechanisms of genes involved in schizophrenia. It represents the first investigation of a miRNA-TF regulatory network for a complex disease, as demonstrated in schizophrenia.
Highlights
Schizophrenia is a complex brain disorder with molecular mechanisms that have yet to be elucidated
A case-control association study revealed that two single nucleotide polymorphisms (SNPs) in miRNAs hsa-miR-206 and hsa-miR-198 were significantly associated with schizophrenia [8]
Among schizophrenia candidate genes (SZGenes), we identified the potential targets of transcription factors (TFs) and schizophrenia related miRNAs
Summary
Schizophrenia is a complex brain disorder with molecular mechanisms that have yet to be elucidated. Previous studies have suggested that changes in gene expression may play an important role in the etiology of schizophrenia, and that microRNAs (miRNAs) and transcription factors (TFs) are primary regulators of this gene expression. Patterns of differential gene expression have been identified between schizophrenia case and control samples [2,3]. Studies found that a miRNA regulates signaling downstream from the NMDA receptor, suggesting miRNAs as a new mechanism for altering brain gene expression in schizophrenia [11,12]. This accumulating data suggests that miRNAs may play important roles in the expression of genes linked to schizophrenia
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.