Abstract

This paper introduces an innovative methodology designed for intrinsic sensing of the adhesion state in directional dry adhesives. Rooted in the inherent shear actuation requirements of these adhesives, the sensing framework incorporates an elastic beam model for a single seta and an equivalent spring model for setae arrays during actuation, facilitating the transformation of complex micro-scale contact issues into relatively simple mechanical measurements. Using microwedge adhesives as a representative case study, the methodology is validated by a series of quantitative experiments and an experimental robotic gripper scenario, in which a straightforward and cost-effective commercial strain gauge proves competent for complex contact state sensing. The proposed methodology indicates substantial implications for improving the operational performance and expanding the application range of gecko-inspired adhesive operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call