Abstract

Loading conditions of railway vehicles both affect the vehicle and substructure directly. There are approaches to determine the load of a railway vehicle, the first one is to statically weigh the vehicle, the second approach is to place sensors along the track and dynamically weigh the vehicle at certain sections and the third one is to design special sensors that can be implemented on the vehicle. In this study, a model based indirect estimation methodology for normal load is proposed. This approach is based on interpreting angular velocities of wheels and translational velocity measurements of a vehicle to determine the normal load. A swarm intelligence based evolution of multiple models is proposed for estimation. In order to validate the approach, measurements taken from a tram wheel test stand with an independently rotating wheel are considered. The proposed approach is promising to be used as a dynamic weighing system and cost–efficient since only vehicle–based sensors are used. Furthermore, a continuous monitoring of the normal load is made possible with high accuracy since this methodology is neither limited to track–based sensors nor it requires special sensors and instrumented wheelsets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.