Abstract

As the X-band marine radar often suffers from interference of electromagnetic waves of the same frequency transmitted by radars in its vicinity, the acquired images frequently contain co-channel interference noise. The noise degrades the quality of the marine radar images and is unfavorable to the processing and interpretation of the marine radar images. To suppress the noise in marine radar images, a novel method based on pulse-pulse correlation is proposed. This method includes three steps: threshold segmentation, noise extraction and noise fixing. In the threshold segmentation step, the threshold T is calculated based on the K distribution sea clutter model. In the noise extraction step, a 3×3 window is applied. By using the window, the pixels of noise can be extracted, and at the same time the pixels of non-noise can be discarded. In the noise fixing step, the strategy of piecewise interpolation is applied. At the region near to the image center, the triangulation with linear interpolation algorithm is applied; at the region far from the image center, the nearest neighbor algorithm is applied. The real X band marine radar image was used to test the performance of the proposed method. The obtained results show that the proposed method is able to reduce the co-channel interference noise from the marine radar images significantly and keep the information of objects in the images such as ships and islands. Besides, the proposed method can be fast in speed of operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.