Abstract
As a promising additive manufacturing (AM) technology, the applications of selective laser melting (SLM) are expanding. Yet, due to the complex structure of SLM machines and low processing rates, the SLM process is highly energy-intensive. Energy forecasting is crucial for accurate evaluation and reduction of SLM energy consumption. However, due to the diversity of SLM machines and their various operating states, the energy consumption of SLM processes is difficult to predict. This article presents a novel method to forecast the energy consumption of SLM processes. The proposed approach is based on the power modelling of machine subsystems and the temporal modelling of sub-processes. Through identifying the working statuses of subsystems of SLM machines in each sub-process, forecast accuracy can be greatly improved. Two cases of aluminium components fabricated by an SLM process using an SLM 280HL facility are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method outperforms specific, stage-based and subsystem-based energy benchmark models in energy consumption forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.