Abstract

The unavailability/frequency analysis of critical failure states of complex industrial systems is normally conducted by using the Fault-tree methodology. The number of Fault-trees describing the system is given by the number of system’s failure states (i.e. Top-events). For each Top-event characterised by unacceptable occurrence probability, some design improvements should be made. Importance and Sensitivity Analysis (ISA) is normally applied to identify the weakest parts of the system. By selecting these parts for design improvement, the overall improvement of the system is made more effective. In current practice, ISA is normally applied sequentially to all Fault-trees. The sequence order is subjectively selected by the analyst, based on several criteria as for instance the severity of the associated Top-event. This approach has the clear limitation of not ensuring the identification of the most cost-effective design solution to improve safety. The present paper describes an alternative approach which consists of concurrently analysing all relevant system’s Fault-trees with the objective of overcoming the above limitations and to identify the most cost-effective solution. In addition, the proposed method extends the ISA application to “over-reliable” system functions, if any, on which the reliability/maintainability characteristics of the involved components can be relaxed, with a resulting cost saving. The overall outcome of the analysis is a uniformly protected system, which satisfies the predefined design goals. A point to note is that the overall cost of the analysis of the proposed approach is significantly lower if compared with the sequential case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.