Abstract
Exogenously administered hydrogen exerts cytoprotective effects through anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms in various disease settings, including organ transplantation. Our objective in this study was to evaluate the efficacy of a novel cold storage device equipped with a hydrogen-rich water bath. The study used an established rat heterotopic transplantation model. Syngeneic heart grafts from elderly donors (60- to 70-week-old Lewis rats) or allografts from adult donors (12-week-old Brown Norway rats) were exposed to prolonged cold preservation. The cardiac grafts were stored in plastic bags containing Celsior, which were immersed in the cold water bath equipped with an electrolyzer to saturate the water with hydrogen. The cardiac grafts then were heterotopically engrafted into Lewis rat recipients. In both experimental settings, serum troponin I and creatine phosphokinase were markedly elevated 3 hours after reperfusion in the control grafts without hydrogen treatment. The grafts exhibited prominent inflammatory responses, including neutrophil infiltration and the upregulation of messenger RNAs for pro-inflammatory cytokines and chemokines. Myocardial injury and inflammatory events were significantly attenuated by organ storage in the hydrogen-rich water bath. The grafts stored using the hydrogen-rich water bath also exhibited less mitochondrial damage and a higher adenosine triphosphate content. Hydrogen delivery to cardiac grafts during cold preservation using a novel hydrogen-supplemented water bath efficiently ameliorated myocardial injury due to cold ischemia and reperfusion. This new device to saturate organs with hydrogen during cold storage merits further investigation for possible therapeutic and preventative use during transplantation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.