Abstract

Artificial intelligence technology has enabled the manufacturing industry and actively guided its transformation and promotion for the past few decades. Injection molding technology is a crucial procedure in mechanical engineering and manufacturing due to its adaptability and dimensional stability. An essential step in the injection molding process is quality inspection and manual visual inspection is still used in conventional quality control, but this open-loop working method has issues with subjectivity and real-time monitoring capacity. This paper proposes an integrated “processing–matching–classification–diagnosis” concept based on machine vision and deep learning that allows for efficient and intelligent diagnosis of injection molding in complex scenarios. Based on eight categories of failure images of plastic components, this paper summarizes the theoretical method of processing fault categorization and identifies the various causes of defects from injection machines and molds. A template matching mechanism based on a new concept—arbitration function Jψij—provided in this paper, matches the edge features to achieve the initial classification of plastic components images. A conventional VGG16 network is innovatively upgraded in this work in order to further classify the unqualified plastic components. The classification accuracy of this improved VGG16 reaches 96.67%, which is better than the 53.33% of the traditional network. The accuracy, responsiveness, and resilience of the quality inspection are all improved in this paper. This work enhances production safety while promoting automation and intelligence of fault diagnosis in injection molding systems. Similar technical routes can be generalized to other industrial scenarios for quality inspection problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.