Abstract
PurposeThis paper aims to realize an in-situ quality inspection system rapidly for new injection molding (IM) tasks via transfer learning (TL) approach and automation technology.Design/methodology/approachThe proposed in-situ quality inspection system consists of an injection machine, USB camera, programmable logic controller and personal computer, interconnected via OPC or USB communication interfaces. This configuration enables seamless automation of the IM process, real-time quality inspection and automated decision-making. In addition, a MobileNet-based deep learning (DL) model is proposed for quality inspection of injection parts, fine-tuned using the TL approach.FindingsUsing the TL approach, the MobileNet-based DL model demonstrates exceptional performance, achieving validation accuracy of 99.1% with the utilization of merely 50 images per category. Its detection speed and accuracy surpass those of DenseNet121-based, VGG16-based, ResNet50-based and Xception-based convolutional neural networks. Further evaluation using a random data set of 120 images, as assessed through the confusion matrix, attests to an accuracy rate of 96.67%.Originality/valueThe proposed MobileNet-based DL model achieves higher accuracy with less resource consumption using the TL approach. It is integrated with automation technologies to build the in-situ quality inspection system of injection parts, which improves the cost-efficiency by facilitating the acquisition and labeling of task-specific images, enabling automatic defect detection and decision-making online, thus holding profound significance for the IM industry and its pursuit of enhanced quality inspection measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.