Abstract
Spray coating is a common method of distributing liquids over powders, especially in the pharmaceutical, detergent and food industries. During this process, liquid drops are deposited on the surface of particles. Liquid is then transferred between particles via particle collisions, in a process called liquid contact spreading. This contact spreading process facilitates inter-particle coating, in which wetting, de-wetting, mixing and drying are occurring simultaneously. This work presents the first experimental study of the mechanism of liquid contact spreading. In this work, a novel experimental method has been developed to investigate the mechanism of contact spreading, incorporating a newly developed image analysis technique, based on colourimetric measurements, to quantitatively determine coating behaviour via contact spreading.Here, experiments designed to isolate the contact spreading coating mechanism were performed in a tumbling drum using a model material system; alumina particles and dyed polyethylene glycol solutions of varying viscosities. The coating uniformity was quantified by the variation in inter-particle coating; the coefficient of variation (CoV). For all systems, the uniformity of the coating increased with time until the CoV decreased to an asymptotic value. The rate of the decrease in the CoV was successfully fitted using an exponential decay function.The viscosity of the coating solution had a significant effect on the rate of liquid transfer; the lower the viscosity the faster the contact spreading process. This effect is attributed to differences in the formation and stability of liquid bridges between the particles, influencing the extent of liquid transfer. The results also show that in most cases examined here, viscous forces play a main role in the contact spreading process, and the contribution of capillary forces are minimal. This understanding could assist with the design and scale up of wet coating processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.