Abstract

We examine the stability of a vertical liquid bridge between two vertically vibrating, coaxial disks. Assuming that the vibration amplitude and period are much smaller than the mean distance between the disks and the global timescale, respectively, we employ the method of multiple scales to derive a set of asymptotic equations. The set is then used to examine the stability of a bridge of an almost cylindrical shape. It is shown that, if acting alone, gravity is a destabilizing influence, whereas vibration can weaken it or even eliminate altogether. Thus, counter-intuitively, vibration can stabilize an otherwise unstable capillary structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.