Abstract
A multivariate data modelling problem consists of a number of nodes with associated function values. Increase in multivariance urges us to use divide-and-conquer algorithms in modelling process of these problems. High dimensional model representation based methods can partition a given multivariate data set into less-variate data sets and have the ability of building a model through these partitioned data sets. Generalized HDMR (GHDMR) is one of these methods and it is known that it works well for dominantly and purely additive natures. Piecewise Generalized HDMR is an alternative method and was developed to increase the efficiency of GHDMR but the performance of the method for modelling multiplicative natures is still not sufficient and acceptable. This work aims to develop a new piecewise method based on enhanced multivariance product representation which works well for representing multiplicative natures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.