Abstract
PurposeThe plain High Dimensional Model Representation (HDMR) method needs Dirac delta type weights to partition the given multivariate data set for modelling an interpolation problem. Dirac delta type weight imposes a different importance level to each node of this set during the partitioning procedure which directly effects the performance of HDMR. The purpose of this paper is to develop a new method by using fluctuation free integration and HDMR methods to obtain optimized weight factors needed for identifying these importance levels for the multivariate data partitioning and modelling procedure.Design/methodology/approachA common problem in multivariate interpolation problems where the sought function values are given at the nodes of a rectangular prismatic grid is to determine an analytical structure for the function under consideration. As the multivariance of an interpolation problem increases, incompletenesses appear in standard numerical methods and memory limitations in computer‐based applications. To overcome the multivariance problems, it is better to deal with less‐variate structures. HDMR methods which are based on divide‐and‐conquer philosophy can be used for this purpose. This corresponds to multivariate data partitioning in which at most univariate components of the Plain HDMR are taken into consideration. To obtain these components there exist a number of integrals to be evaluated and the Fluctuation Free Integration method is used to obtain the results of these integrals. This new form of HDMR integrated with Fluctuation Free Integration also allows the Dirac delta type weight usage in multivariate data partitioning to be discarded and to optimize the weight factors corresponding to the importance level of each node of the given set.FindingsThe method developed in this study is applied to the six numerical examples in which there exist different structures and very encouraging results were obtained. In addition, the new method is compared with the other methods which include Dirac delta type weight function and the obtained results are given in the numerical implementations section.Originality/valueThe authors' new method allows an optimized weight structure in modelling to be determined in the given problem, instead of imposing the use of a certain weight function such as Dirac delta type weight. This allows the HDMR philosophy to have the chance of a flexible weight utilization in multivariate data modelling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.