Abstract
Micropollutants (MPs) released into aquatic ecosystems have adverse effects on public health. Hence, monitoring and managing MPs in aquatic systems are imperative. MPs can be quantified by high-resolution mass spectrometry (HRMS) with stable isotope-labeled (SIL) standards. However, high cost of SIL solutions is a significant issue. This study aims to develop a rapid and cost-effective analytical approach to estimate MP concentrations in aquatic systems based on deep learning (DL) and multi-objective optimization. We hypothesized that internal standards could quantify the MP concentrations other than the target substance. Our approach considered the precision of intra-/inter-day repeatability and natural organic matter information to reduce instrumental error and matrix effect. We selected standard solutions to estimate the concentrations of 18 MPs. Among the optimal DL models, DarkNet-53 using nine standard solutions yielded the highest performance, while ResNet-50 yielded the lowest. Overall, this study demonstrated the capability of DL models for estimating MP concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.