Abstract
ABSTRACT The several benefits of distributed generation (DG) have encouraged the utility companies for the integration of different DG technologies in the radial distribution network. The large penetration of DG units has significantly influenced the voltage stability of the radial distribution network. In this paper, in order to determine the penetration level of DGs in the radial distribution network, a static voltage stability index (VSI)-based method has been explored for the identification of optimal locations at various penetration levels. The proposed method is compared with modal analysis-based optimal placement method at the various penetration levels of DGs. For the identification of the maximum penetration level (PL) of DGs in the radial distribution network, the IEEE 33 and 69 node radial distribution network with various DG penetration levels, i.e. 20%, 40% and 60% have been utilised in this study. The results show that the placement of DGs at nodes sensitive to voltage collapse has increased the voltage stability margins (VSM). It is also observed that the DGs penetration level beyond a certain limit have an adverse effect on static voltage stability margin and power losses of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australian Journal of Electrical and Electronics Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.