Abstract

BackgroundPathologically prolonged bursts of neural activity in the 8−30 Hz frequency range in Parkinson’s disease have been measured using high power event detector thresholds. New methodThis study introduces a novel method for determining beta bursts using a power baseline based on spectral activity that overlapped a simulated 1/f spectrum. We used resting state local field potentials from people with Parkinson’s disease and a simulated 1/f signal to measure beta burst durations, to demonstrate how tuning parameters (i.e., bandwidth and center frequency) affect burst durations, to compare burst duration distributions with high power threshold methods, and to study the effect of increasing neurostimulation intensities on burst duration. ResultsThe baseline method captured a broad distribution of resting state beta band burst durations. Mean beta band burst durations were significantly shorter on compared to off neurostimulation (p = 0.0046), and their distribution shifted towards that of the 1/f spectrum during increasing intensities of stimulation. Comparison with existing methodsHigh power event detection methods, measure duration of higher power bursts and omit portions of the neural signal. The baseline method captured the broadest distribution of burst durations and was more sensitive than high power detection methods in demonstrating the effect of neurostimulation on beta burst duration. ConclusionsThe baseline method captured a broad range of fluctuations in beta band neural activity and demonstrated that subthalamic neurostimulation shortened burst durations in a dose (intensity) dependent manner, suggesting that beta burst duration is a useful control variable for closed loop algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.